Search results
Results from the WOW.Com Content Network
If D is a simple type of region with its boundary consisting of the curves C 1, C 2, C 3, C 4, half of Green's theorem can be demonstrated. The following is a proof of half of the theorem for the simplified area D, a type I region where C 1 and C 3 are curves connected by vertical lines (possibly of zero length).
is the derivative of the Green's function along the inward-pointing unit normal vector ^. The integration is performed on the boundary, with measure d s {\displaystyle ds} . The function ν ( s ) {\displaystyle \nu (s)} is given by the unique solution to the Fredholm integral equation of the second kind,
See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative. It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function.
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
A desmodromic valve is a reciprocating engine poppet valve that is positively closed by a cam and leverage system, rather than by a more conventional spring. The valves in a typical four-stroke engine allow the air/fuel mixture into the cylinder at the beginning of the cycle and exhaust spent gases at the end of the cycle. In a conventional ...
Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole. Pólya, George (1990), Mathematics and Plausible Reasoning, Vol.
2D Contour Plot of Taylor Green Vortex. In fluid dynamics, the Taylor–Green vortex is an unsteady flow of a decaying vortex, which has an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian coordinates. It is named after the British physicist and mathematician Geoffrey Ingram Taylor and his collaborator A ...
In mathematics, Green formula may refer to: Green's theorem in integral calculus; Green's identities in vector calculus; Green's function in differential equations;