Search results
Results from the WOW.Com Content Network
[6] [7] [a] The parentheses can be omitted if the input is a single numerical variable or constant, [2] as in the case of sin x = sin(x) and sin π = sin(π). [a] Traditionally this convention extends to monomials; thus, sin 3x = sin(3x) and even sin 1 / 2 xy = sin(xy/2), but sin x + y = sin(x) + y, because x + y is not a monomial ...
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis ), 13 and 16 [ b ] unresolved.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem.
Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers ( Irrationalität und Transzendenz bestimmter Zahlen ).
The general problem was solved in the affirmative, in 1927, by Emil Artin, [6] for positive semidefinite functions over the reals or more generally real-closed fields. An algorithmic solution was found by Charles Delzell in 1984. [ 7 ]