Search results
Results from the WOW.Com Content Network
It is known that the least squares estimator minimizes the variance of mean-unbiased estimators (under the conditions of the Gauss–Markov theorem). In the estimation theory for statistical models with one real parameter, the reciprocal of the variance of an ("efficient") estimator is called the "Fisher information" for that estimator. [7]
For example, if a distribution is a combination of 98% N(μ, σ) and 2% N(μ, 10σ), the presence of extreme values from the latter distribution (often "contaminating outliers") significantly reduces the efficiency of the sample mean as an estimator of μ.
A cost estimate is the approximation of the cost of a program, project, or operation. The cost estimate is the product of the cost estimating process. The cost estimate has a single total value and may have identifiable component values. A problem with a cost overrun can be avoided with a credible, reliable, and accurate cost estimate. A cost ...
An example arises in the estimation of the population variance by sample variance. For a sample size of n , the use of a divisor n −1 in the usual formula ( Bessel's correction ) gives an unbiased estimator, while other divisors have lower MSE, at the expense of bias.
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
The James–Stein estimator may seem at first sight to be a result of some peculiarity of the problem setting. In fact, the estimator exemplifies a very wide-ranging effect; namely, the fact that the "ordinary" or least squares estimator is often inadmissible for simultaneous estimation of several parameters.
It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size () obtained by omitting one observation. [1]
Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.