enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free electron model - Wikipedia

    en.wikipedia.org/wiki/Free_electron_model

    In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [ 1 ] principally by Arnold Sommerfeld , who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld ...

  3. Dirac sea - Wikipedia

    en.wikipedia.org/wiki/Dirac_sea

    The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons. It was first postulated by the British physicist Paul Dirac in 1930 [ 1 ] to explain the anomalous negative-energy quantum states predicted by the relativistically-correct Dirac equation for electrons . [ 2 ]

  4. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    The nearly-free electron debacle compelled researchers to modify the assumpition that ions flowed in a sea of free electrons. A number of quantum mechanical models were developed, such as band structure calculations based on molecular orbitals, and the density functional theory. These models either depart from the atomic orbitals of neutral ...

  5. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons (the carriers of electricity) by the relatively immobile ions in the metal that act like obstructions to the flow of electrons. The model, which is an application of kinetic theory, assumes that the microscopic behaviour of electrons in a ...

  6. Delocalized electron - Wikipedia

    en.wikipedia.org/wiki/Delocalized_electron

    Metallic structure consists of aligned positive ions in a "sea" of delocalized electrons. This means that the electrons are free to move throughout the structure, and gives rise to properties such as conductivity. In diamond all four outer electrons of each carbon atom are 'localized' between the atoms in covalent bonding. The movement of ...

  7. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  8. Composite fermion - Wikipedia

    en.wikipedia.org/wiki/Composite_fermion

    Here is the wave function of interacting electrons at filling factor ; is the wave function for weakly interacting electrons at ; is the number of electrons or composite fermions; = + is the coordinate of the th particle; and is an operator that projects the wave function into the lowest Landau level. This provides an explicit mapping between ...

  9. Jellium - Wikipedia

    en.wikipedia.org/wiki/Jellium

    Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges (i.e. atomic nuclei) are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space.