enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/.../Convergence_of_random_variables

    In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than ...

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    This article is supplemental for “Convergence of random variables” and provides proofs for selected results. Several results will be established using the portmanteau lemma: A sequence {X n} converges in distribution to X if and only if any of the following conditions are met:

  4. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  5. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    This theorem follows from the fact that if X n converges in distribution to X and Y n converges in probability to a constant c, then the joint vector (X n, Y n) converges in distribution to (X, c) . Next we apply the continuous mapping theorem , recognizing the functions g ( x , y ) = x + y , g ( x , y ) = xy , and g ( x , y ) = x y −1 are ...

  6. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if x n → x then g(x n) → g(x).

  7. Scheffé's lemma - Wikipedia

    en.wikipedia.org/wiki/Scheffé's_lemma

    Applied to probability theory, Scheffe's theorem, in the form stated here, implies that almost everywhere pointwise convergence of the probability density functions of a sequence of -absolutely continuous random variables implies convergence in distribution of those random variables.

  8. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.