Search results
Results from the WOW.Com Content Network
In geotechnical engineering, a soil test can be used to determine the physical characteristics of a soil, such as its water content, void ratio or bulk density. Soil testing can also provide information related to the shear strength, rate of consolidation and permeability of the soil. The following is a non-exhaustive list of engineering soil ...
A soil ball with indigenous worms in soil amended a few weeks previously with bokashi fermented matter. Bokashi is a process that converts food waste and similar organic matter into a soil amendment which adds nutrients and improves soil texture. It differs from traditional composting methods in several respects. The most important are:
In even a slight presence of water, carbonic acid dehydrates to carbon dioxide and water, which then catalyzes further decomposition. [6] For this reason, carbon dioxide can be considered the carbonic acid anhydride. The hydration equilibrium constant at 25 °C is [H 2 CO 3]/[CO 2] ≈ 1.7×10 −3 in pure water [12] and ≈ 1.2×10 −3 in ...
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under mild conditions. In biochemistry, dehydrogenase enzymes use reductive amination to produce the amino acid glutamate. Additionally, there is ongoing research ...
Non-carbon nucleophiles such as water, alcohols, amines, and enamines can also react with an α,β-unsaturated carbonyl in a 1,4-addition. [10] Some authors have broadened the definition of the Michael addition to essentially refer to any 1,4-addition reaction of α,β-unsaturated carbonyl compounds.
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
In clayey soil, bacteria are capable of reorienting and moving clay particles under low confining stress (at shallow depths). However, inability to make these rearrangements under high confining stresses limits bacterial activity at larger depths. Furthermore, sediment-cell interaction may cause puncture or tensile failure of the cell membrane.