enow.com Web Search

  1. Ad

    related to: associative property in subtraction examples sentences with pictures

Search results

  1. Results from the WOW.Com Content Network
  2. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    Associative property. In mathematics, the associative property[1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

  3. Operator associativity - Wikipedia

    en.wikipedia.org/wiki/Operator_associativity

    In programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two ...

  4. Subtraction - Wikipedia

    en.wikipedia.org/wiki/Subtraction

    Subtraction is an operation that represents removal of objects from a collection. [1] For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3.

  5. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more ...

  6. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    e. In mathematics, an associative algebra A over a commutative ring (often a field) K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of K).

  7. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    Fundamentals. The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  8. Commutative algebra - Wikipedia

    en.wikipedia.org/wiki/Commutative_algebra

    Commutative algebra. Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers ...

  9. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    In mathematics, a basic algebraic operation is any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). [1] These operations may be performed on numbers, in which case they are often called arithmetic operations.

  1. Ad

    related to: associative property in subtraction examples sentences with pictures