Search results
Results from the WOW.Com Content Network
By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...
Electromagnetic wave equation. The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or ...
Helmholtz equation. In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation: where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number.
The magnetic vector potential, , is a vector field, and the electric potential, , is a scalar field such that: [3] where is the magnetic field and is the electric field. In magnetostatics where there is no time-varying current or charge distribution, only the first equation is needed. (In the context of electrodynamics, the terms vector ...
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...
The wave equation in this form also bears some resemblance to the Lorentz force in curved spacetime, where A a plays the role of the 4-position. For the case of a metric signature in the form (+, −, −, −), the derivation of the wave equation in curved spacetime is carried out in the article. [citation needed]
In mathematics, and specifically partial differential equations (PDEs), d´Alembert's formula is the general solution to the one-dimensional wave equation: for. It is named after the mathematician Jean le Rond d'Alembert, who derived it in 1747 as a solution to the problem of a vibrating string. [1]
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.