enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. [1][2][3][4] Stresses are proportional to the rate of change of the fluid's velocity vector. A fluid is Newtonian only if the tensors that describe ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    Shear rate. Rate of change in the shear deformation of a material with respect to time. In physics, mechanics and other areas of science, shear rate is the rate at which a progressive shear strain is applied to some material, causing shearing to the material. Shear rate is a measure of how the velocity changes with distance.

  5. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    Power-law fluid. In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by. where: ∂ u / ∂ y⁠ is the shear rate or the velocity gradient perpendicular to the plane of shear (SI unit s −1), and.

  6. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity ...

  7. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    Shear thinning is the most common type of non-Newtonian behavior of fluids and is seen in many industrial and everyday applications. [4] Although shear thinning is generally not observed in pure liquids with low molecular mass or ideal solutions of small molecules like sucrose or sodium chloride, it is often observed in polymer solutions and ...

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such ...

  9. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress . The consistency is a simple constant of ...