Search results
Results from the WOW.Com Content Network
This article consists of tables outlining a number of physical quantities.. The first table lists the fundamental quantities used in the International System of Units to define the physical dimension of physical quantities for dimensional analysis.
square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity
Here the metric prefix 'kilo-' (symbol 'k') stands for a factor of 1000; thus, 1 km = 1000 m. The SI provides twenty-four metric prefixes that signify decimal powers ranging from 10 −30 to 10 30, the most recent being adopted in 2022.
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
In the cases where non-SI units are used, the numerical calculation of a formula can be done by first working out the factor, and then plug in the numerical values of the given/known quantities. For example, in the study of Bose–Einstein condensate , [ 6 ] atomic mass m is usually given in daltons , instead of kilograms , and chemical ...
SI base units Name Symbol Measure Post-2019 formal definition [1] Historical origin / justification Dimension symbol; second: s time "The second, symbol s, is the SI unit of time.
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.