Search results
Results from the WOW.Com Content Network
The local hour angle (LHA) of an object in the observer's sky is = or = + where LHA object is the local hour angle of the object, LST is the local sidereal time, is the object's right ascension, GST is Greenwich sidereal time and is the observer's longitude (positive east from the prime meridian). [3]
Right ascension is usually measured in sidereal hours, minutes and seconds instead of degrees, a result of the method of measuring right ascensions by timing the passage of objects across the meridian as the Earth rotates. There are 360° / 24 h = 15° in one hour of right ascension, and 24 h of right ascension around the entire ...
Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...
Sidereal time vs solar time. Above left: a distant star (the small orange star) and the Sun are at culmination, on the local meridian m. Centre: only the distant star is at culmination (a mean sidereal day). Right: a few minutes later the Sun is on the local meridian again. A solar day is complete.
Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction. Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point in question above the Earth. [1]
Spherical astronomy, or positional astronomy, is a branch of observational astronomy used to locate astronomical objects on the celestial sphere, as seen at a particular date, time, and location on Earth. It relies on the mathematical methods of spherical trigonometry and the measurements of astrometry.
GAST is the Greenwich apparent sidereal time (the angle between the apparent vernal equinox and the meridian in the plane of the equator). This is a known function of UT. [29] α is the right ascension of the apparent Sun (the angle between the apparent vernal equinox and the actual Sun in the plane of the equator).
An object's right ascension and the local sidereal time can be used to determine the time of its culmination (see hour angle). The term meridian comes from the Latin meridies , which means both "midday" and "south", as the celestial equator appears to tilt southward from the Northern Hemisphere .