Search results
Results from the WOW.Com Content Network
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
To use potentiometric (e.m.f.) measurements in monitoring the + concentration in place of readings, one can trivially set [+] = and apply the same equations as above, where is the offset correction /, and is a slope correction / (1/59.2 pH units/mV at 25°C), such that replaces .
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [ 2 ] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [ 3 ]
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
If pH is below the pK a or pK b value, the converse is true. Usually, the color change is not instantaneous at the pK a or pK b value, but a pH range exists where a mixture of colors is present. This pH range varies between indicators, but as a rule of thumb, it falls between the pK a or pK b value plus or minus one. This assumes that solutions ...
Average rates for popular mortgage terms inch in opposite directions as of Wednesday, November 13, 2024, with benchmark 30-year rates moving away from 7.00%, while 15-year rates crawl higher.
This enormous range of stability constant values (ca. 100 to 10 11) is possible because of the logarithmic response of the electrode. The limitations arise because the Nernst equation breaks down at very low or very high pH.