Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
Buffer solutions resist pH change because of a chemical equilibrium between the weak acid HA and its conjugate base A −: HA ⇌ H + + A − When some strong acid is added to an equilibrium mixture of the weak acid and its conjugate base, hydrogen ions (H + ) are added, and the equilibrium is shifted to the left, in accordance with Le ...
Because the relationship pK b = pK w − pK a holds only in aqueous solutions (though analogous relationships apply for other amphoteric solvents), subdisciplines of chemistry like organic chemistry that usually deal with nonaqueous solutions generally do not use pK b as a measure of basicity.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. [1]
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton (H +) to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction.
The increase in atmospheric increases H+ ion production because in the ocean reacts with water and produces carbonic acid, and carbonic acid releases H+ ions and bicarbonate ions. [15] Overall, since the Industrial Revolution the ocean has experienced a pH decrease by about 0.1 pH units due to the increase in C O 2 {\displaystyle \mathrm {CO_{2 ...
The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis.