Search results
Results from the WOW.Com Content Network
The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] who demonstrated that the application of the BRST gauge fixing procedure to Langevin SDEs, i.e., to SDEs with linear phase spaces, gradient flow vector fields, and additive noises, results in N=2 supersymmetric models.
Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...
In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison ...
where y is an n × 1 vector of observable state variables, u is a k × 1 vector of control variables, A t is the time t realization of the stochastic n × n state transition matrix, B t is the time t realization of the stochastic n × k matrix of control multipliers, and Q (n × n) and R (k × k) are known symmetric positive definite cost matrices.
The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. [60] For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term stochastischer Prozeß was used in German by Aleksandr Khinchin, [63] [64] though the German term had been used earlier, for example, by Andrei Kolmogorov ...
In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21] Fred W. Glover [22] argues that reliance on random elements may prevent the development of more intelligent and better deterministic components. The way in which results ...
Ergodic theory is often concerned with ergodic transformations.The intuition behind such transformations, which act on a given set, is that they do a thorough job "stirring" the elements of that set. E.g. if the set is a quantity of hot oatmeal in a bowl, and if a spoonful of syrup is dropped into the bowl, then iterations of the inverse of an ergodic transformation of the oatmeal will not ...
Stochastic social science theory can be seen as an elaboration of a kind of 'third axis' in which to situate human behavior alongside the traditional 'nature vs. nurture' opposition. See Julia Kristeva on her usage of the 'semiotic', Luce Irigaray on reverse Heideggerian epistemology, and Pierre Bourdieu on polythetic space for examples of ...