Search results
Results from the WOW.Com Content Network
The term also refers to the removal of molecular oxygen (O 2) from gases and solvents, a step in air-free technique and gas purifiers. As applied to organic compounds, deoxygenation is a component of fuels production as well a type of reaction employed in organic synthesis , e.g. of pharmaceuticals .
The color of human blood ranges from bright red when oxygenated to a darker red when deoxygenated. [2] It owes its color to hemoglobin, to which oxygen binds. Deoxygenated blood is darker due to the difference in shape of the red blood cell when oxygen binds to haemoglobin in the blood cell (oxygenated) versus does not bind to it (deoxygenated).
The arteriovenous oxygen difference is usually taken by comparing the difference in the oxygen concentration of oxygenated blood in the femoral, brachial, or radial artery and the oxygen concentration in the deoxygenated blood from the mixed supply found in the pulmonary artery (as an indicator of the typical mixed venous supply).
The systemic circulation is a circuit loop that delivers oxygenated blood from the left heart to the rest of the body, and returns deoxygenated blood back to the right heart via large veins known as the venae cavae. The systemic circulation can also be defined as two parts – a macrocirculation and a microcirculation.
This is because the spectrum of light absorbed by hemoglobin differs between the oxygenated and deoxygenated states. [35] Blood in carbon monoxide poisoning is bright red, because carbon monoxide causes the formation of carboxyhemoglobin. In cyanide poisoning, the body cannot use oxygen, so the venous blood remains oxygenated, increasing the ...
The other division of the circulatory system is the systemic circulation that begins with receiving the oxygenated blood from the pulmonary circulation into the left atrium. From the atrium the oxygenated blood enters the left ventricle where it is pumped out to the rest of the body, returning as deoxygenated blood back to the pulmonary ...
Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are those of the pulmonary and fetal circulations which carry oxygenated blood to the heart. In the systemic circulation, arteries carry oxygenated blood away from the heart, and veins return deoxygenated blood to the heart, in the deep veins. [1]
Venous oxygen saturation (SvO 2) is the percentage of oxygenated hemoglobin returning to the right side of the heart. It can be measured to see if oxygen delivery meets the tissues' demands. SvO 2 typically varies between 60% and 80%. [9] A lower value indicates that the body is in lack of oxygen, and ischemic diseases occur.