enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    The Boltzmann constant, and therefore entropy, have dimensions of energy divided by temperature, which has a unit of joules per kelvin (J⋅K −1) in the International System of Units (or kg⋅m 2 ⋅s −2 ⋅K −1 in terms of base units). The entropy of a substance is usually given as an intensive property — either entropy per unit mass ...

  3. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamics. In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, cream and coffee can be mixed together, but cannot be "unmixed"; a piece of wood can be burned, but cannot be "unburned". The word 'entropy' has entered popular usage to refer to a lack of ...

  4. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: where is the probability of the message taken from the message space M, and b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat ...

  5. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy.This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  6. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities ...

  7. History of entropy - Wikipedia

    en.wikipedia.org/wiki/History_of_entropy

    History of entropy. The concept of entropy developed in response to the observation that a certain amount of functional energy released from combustion reactions is always lost to dissipation or friction and is thus not transformed into useful work. Early heat-powered engines such as Thomas Savery 's (1698), the Newcomen engine (1712) and the ...

  8. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Chemical potential. Particle number. In classical thermodynamics, entropy (from Greek τρoπή (tropḗ) 'transformation') is a property of a thermodynamic system that expresses the direction or outcome of spontaneous changes in the system. The term was introduced by Rudolf Clausius in the mid-19th century to explain the relationship of the ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot. Carnot used the phrase motive power for work. In the footnotes to his famous On the Motive Power of Fire, he states ...