Search results
Results from the WOW.Com Content Network
In mathematics, a variable (from Latin variabilis, "changeable") is a symbol, typically a letter, that refers to an unspecified mathematical object. [1] [2] [3] One says colloquially that the variable represents or denotes the object, and that any valid candidate for the object is the value of the variable.
Variable binding relates three things: a variable v, a location a for that variable in an expression and a non-leaf node n of the form Q(v, P). Note: we define a location in an expression as a leaf node in the syntax tree. Variable binding occurs when that location is below the node n. In the lambda calculus, x is a bound variable in the term M ...
In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. [1] For example, the binary function (,) = + has two arguments, and , in an ordered pair (,).
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
The term Variable is relevant to several contexts, and is especially important to mathematics and computer science. Scientists and engineers will often use mathematical variables in formulae and equations, such as E = mc 2; they will also have their own special uses of the term. The term Variable can also occur in other contexts, such as ...
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
In this notation, x is the argument or variable of the function. A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. A function f, its domain X, and its codomain Y are often specified by the notation :.