enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Writing the transpose of the matrix of cofactors, known as an adjugate matrix, can also be an efficient way to calculate the inverse of small matrices, but this recursive method is inefficient for large matrices. To determine the inverse, we calculate a matrix of cofactors:

  3. Laplace expansion - Wikipedia

    en.wikipedia.org/wiki/Laplace_expansion

    Laplace expansion. In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n - matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) - submatrices of B. Specifically, for every i, the Laplace expansion ...

  4. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices.

  5. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    Adjugate matrix. In linear algebra, the adjugate of a square matrix A is the transpose of its cofactor matrix and is denoted by adj (A). [1][2] It is also occasionally known as adjunct matrix, [3][4] or "adjoint", [5] though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate ...

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, calculating the inverse of a matrix via Laplace expansion (adj(A) denotes the adjugate matrix of A) A −1 = adj(A) / det(A) may lead to significant rounding errors if the determinant of the matrix is very small. The norm of a matrix can be used to capture the conditioning of linear algebraic problems, such as computing a matrix's ...

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    t. e. Okun's law in macroeconomics states that in an economy the GDP growth should depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the ...

  9. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    Definition. The transpose of a matrix A, denoted by AT, [3] ⊤A, A⊤, , [4][5] A′, [6] Atr, tA or At, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain AT. Write the rows of A as the columns of AT.