enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    This led to the development of pre-clustering methods such as canopy clustering, which can process huge data sets efficiently, but the resulting "clusters" are merely a rough pre-partitioning of the data set to then analyze the partitions with existing slower methods such as k-means clustering. For high-dimensional data, many of the existing ...

  4. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Different Gaussian model-based clustering methods have been developed with an eye to handling high-dimensional data. These include the pgmm method, [11] which is based on the mixture of factor analyzers model, and the HDclassif method, based on the idea of subspace clustering. [12]

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Especially for high-dimensional data, this metric can be rendered almost useless due to the so-called "Curse of dimensionality", making it difficult to find an appropriate value for ε. This effect, however, is also present in any other algorithm based on Euclidean distance.

  8. Canopy clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/Canopy_clustering_algorithm

    Since the algorithm uses distance functions and requires the specification of distance thresholds, its applicability for high-dimensional data is limited by the curse of dimensionality. Only when a cheap and approximative – low-dimensional – distance function is available, the produced canopies will preserve the clusters produced by K-means.

  9. SUBCLU - Wikipedia

    en.wikipedia.org/wiki/SUBCLU

    SUBCLU is an algorithm for clustering high-dimensional data by Karin Kailing, Hans-Peter Kriegel and Peer Kröger. [1] It is a subspace clustering algorithm that builds on the density-based clustering algorithm DBSCAN. SUBCLU can find clusters in axis-parallel subspaces, and uses a bottom-up, greedy strategy to remain efficient.