Search results
Results from the WOW.Com Content Network
The essential service water system (ESWS) circulates the water that cools the plant's heat exchangers and other components before dissipating the heat into the environment. Because this includes cooling the systems that remove decay heat from both the primary system and the spent fuel rod cooling ponds, the ESWS is a safety-critical system. [ 7 ]
Example of a spent fuel pool from the shut-down Caorso Nuclear Power Plant. This pool is not holding large amounts of material. Spent fuel pools (SFP) are storage pools (or "ponds" in the United Kingdom) for spent fuel from nuclear reactors. They are typically 40 or more feet (12 m) deep, with the bottom 14 feet (4.3 m) equipped with storage ...
This was replaced by a stainless steel cladding, but this absorbed enough neutrons to affect criticality, and in turn required the design to operate on slightly enriched uranium rather than the magnox's natural uranium, driving up fuel costs. Ultimately the economics of the system proved little better than Magnox.
The zirconium alloy tubes are about 1 cm in diameter, and the fuel cladding gap is filled with helium gas to improve the conduction of heat from the fuel to the cladding. There are about 179-264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled ...
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents ...
[citation needed] The containment is the fourth and final barrier to radioactive release (part of a nuclear reactor's defence in depth strategy), the first being the fuel ceramic itself, the second being the metal fuel cladding tubes, the third being the reactor vessel and coolant system. [2]
The fuel cladding material was a magnesium-zirconium alloy in the UNGG, as opposed to magnesium-aluminium in Magnox. As both claddings react with water, they can be stored in a spent fuel pool only for short periods of time, making short-term reprocessing of fuel essential, which requires heavily shielded facilities.
MSRs eliminate the nuclear meltdown scenario present in water-cooled reactors because the fuel mixture is kept in a molten state. The fuel mixture is designed to drain without pumping from the core to a containment vessel in emergency scenarios, where the fuel solidifies, quenching the reaction. In addition, hydrogen evolution does not occur.