Search results
Results from the WOW.Com Content Network
The activation of aerobic glycolysis (the Warburg effect), which is not necessarily induced by mutations in proto-oncogenes and tumor suppressor genes, [97] provides most of the building blocks required to duplicate the cellular components of a dividing cell and, therefore, is also essential for carcinogenesis.
It was later found that carcinogenesis (the development of cancer) depended both on the mutation of proto-oncogenes (genes that stimulate cell proliferation) and on the inactivation of tumor suppressor genes, that keep proliferation in check. Knudson's hypothesis refers specifically, however, to the heterozygosity of tumor suppressor genes.
Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes.It focuses on genomic, epigenomic and transcript alterations in cancer. Cancer is a genetic disease caused by accumulation of DNA mutations and epigenetic alterations leading to unrestrained cell proliferation and neoplasm formation.
A proto-oncogene is a normal gene that could become an oncogene due to mutations or increased expression. Proto-oncogenes code for proteins that help to regulate the cell growth and differentiation. Proto-oncogenes are often involved in signal transduction and execution of mitogenic signals, usually through their protein products.
Tumor promotion is a process in carcinogenesis by which various factors permit the descendants of a single initiated cell to survive and expand in number, i.e. to resist apoptosis and to undergo clonal growth. [1] This is a step toward tumor progression. [2] [3]
Carcinogenesis is caused by mutation and epimutation of the genetic material of normal cells, which upsets the normal balance between proliferation and cell death. This results in uncontrolled cell division in the body. The uncontrolled and often rapid proliferation of cells can lead to benign or malignant tumours (cancer).
Scientist Otto Warburg, whose research activities led to the formulation of the Warburg hypothesis for explaining the root cause of cancer.. The Warburg hypothesis (/ ˈ v ɑːr b ʊər ɡ /), sometimes known as the Warburg theory of cancer, postulates that the driver of carcinogenesis (cancer formation) is insufficient cellular respiration caused by insult (damage) to mitochondria. [1]
In B cells, Myc acts as a classical oncogene by regulating a number of pro-proliferative and anti-apoptotic pathways, this also includes tuning of BCR signaling and CD40 signaling in regulation of microRNAs (miR-29, miR-150, miR-17-92). [19] c-Myc induces MTDH(AEG-1) gene expression and in turn itself requires AEG-1 oncogene for its expression.