Search results
Results from the WOW.Com Content Network
rfind(string,substring) returns integer Description Returns the position of the start of the last occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instr
Most of the functions that operate on C strings are declared in the string.h header (cstring in C++), while functions that operate on C wide strings are declared in the wchar.h header (cwchar in C++). These headers also contain declarations of functions used for handling memory buffers; the name is thus something of a misnomer.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot; substitution: coat → cost
C programmers draw a sharp distinction between a "string", aka a "string of characters", which by definition is always null terminated, vs. a "array of characters" which may be stored in the same array but is often not null terminated. Using C string handling functions on such an array of characters often seems to work, but later leads to ...
string" is a substring of "substring" In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. [citation needed] For instance, "the best of" is a substring of "It was the best of times". In contrast, "Itwastimes" is a subsequence of "It was the best of times", but not a substring.
The hash function described here is not a Rabin fingerprint, but it works equally well. It treats every substring as a number in some base, the base being usually the size of the character set. For example, if the substring is "hi", the base is 256, and prime modulus is 101, then the hash value would be
Then if P is shifted to k 2 such that its left end is between c and k 1, in the next comparison phase a prefix of P must match the substring T[(k 2 - n)..k 1]. Thus if the comparisons get down to position k 1 of T , an occurrence of P can be recorded without explicitly comparing past k 1 .
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.