Search results
Results from the WOW.Com Content Network
Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus. [1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion and occasionally loss of consciousness. [1] A person's breath may develop a specific "fruity" or acetone smell. [1]
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
The major differential diagnosis is diabetic ketoacidosis (DKA). In contrast to DKA, serum glucose levels in HHS are extremely high, usually greater than 40-50 mmol/L (600 mg/dL). [6] Metabolic acidosis is absent or mild. [6] A temporary state of confusion (delirium) is also more common in HHS than DKA. HHS also tends to affect older people more.
The expected result of the treatment tackles the deeper causes; which are dehydration, acidosis, and hyperglycemia, and initiates a reversal of the ketosis process. [9] While replacing fluid and electrolyte loss, insulin, and acid-placed balance are the aim of this treatment.
Excretion is the most common cause of hypokalemia and can be caused by diuretic use, metabolic acidosis, diabetic ketoacidosis, hyperaldosteronism, and renal tubular acidosis. [3] Potassium can also be lost through vomiting and diarrhea. [14]
Metabolic acidosis can lead to acidemia, which is defined as arterial blood pH that is lower than 7.35. [6] Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low to high.
In general, the normal range for most people (fasting adults) is about 4 to 6 mmol/L or 80 to 110 mg/dL. (where 4 mmol/L or 80 mg/dL is "optimal".) A subject with a consistent range above 7 mmol/L or 126 mg/dL is generally held to have hyperglycemia, whereas a consistent range below 4 mmol/L or 70 mg/dL is considered hypoglycemic .
One difficulty in evaluation acid-base derangements is the presence of multiple pathologies. A patient may present with a metabolic acidosis process alone, but they may also have a concomitant respiratory acidosis. Winters's formula gives an expected value for the patient's P CO 2; the patient's actual (measured) P CO 2 is then compared to this ...