Search results
Results from the WOW.Com Content Network
The term radiative cooling is generally used for local processes, though the same principles apply to cooling over geological time, which was first used by Kelvin to estimate the age of the Earth (although his estimate ignored the substantial heat released by radioisotope decay, not known at the time, and the effects of convection in the mantle).
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [ 10 ]
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
There are four avenues of heat loss: convection, conduction, radiation, and evaporation. If skin temperature is greater than that of the surroundings, the body can lose heat by radiation and conduction. But, if the temperature of the surroundings is greater than that of the skin, the body actually gains heat by radiation and conduction. In such ...
Alternatively, evaporative heat loss for cooling occurs when temperatures above the TNZ, the upper critical zone (UCT), are realized (Speakman and Keijer 2013). When the T a reaches too far above the UCT, the rate of heat gain and rate of heat production become higher than the rate of heat dissipation (heat loss through evaporative cooling ...
Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]
When heat loss exceeds heat generation, body temperature will fall. [2] Exertion increases heat production by metabolic processes, but when breathing gas is cold and dense, heat loss due to the increased volume of gas breathed to support these metabolic processes can result in a net loss of heat, even if the heat loss through the skin is minimised.
There are four avenues of heat loss: evaporation, convection, conduction, and radiation. If skin temperature is greater than that of the surrounding air temperature, the body can lose heat by convection and conduction. However, if air temperature of the surroundings is greater than that of the skin, the body gains heat by convection and ...