Ad
related to: fixed point theorem statement calculator calculuskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function satisfies the condition to the Brouwer fixed-point theorem: that is, is continuous and maps the unit d-cube to itself.
The Kakutani fixed point theorem generalizes the Brouwer fixed-point theorem in a different direction: it stays in R n, but considers upper hemi-continuous set-valued functions (functions that assign to each point of the set a subset of the set). It also requires compactness and convexity of the set.
In his thesis, Boyce identified a pair of functions that commute under composition, but do not have a common fixed point, proving the fixed point conjecture to be false. [ 14 ] In 1963, Glenn Baxter and Joichi published a paper about the fixed points of the composite function h ( x ) = f ( g ( x ) ) = g ( f ( x ) ) {\displaystyle h(x)=f(g(x))=g ...
Caristi fixed-point theorem (fixed points) Carleson–Jacobs theorem (complex analysis) Carleson's theorem (harmonic analysis) Carlson's theorem (complex analysis) Carmichael's theorem (Fibonacci numbers) Carnot's theorem ; Carnot's theorem (thermodynamics) Cartan–Dieudonné theorem (group theory) Cartan–Hadamard theorem (Riemannian geometry)
Ad
related to: fixed point theorem statement calculator calculuskutasoftware.com has been visited by 10K+ users in the past month