enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    In-context learning, refers to a model's ability to temporarily learn from prompts.For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning.

  3. Wikipedia : Wikipedia Signpost/2024-06-08/Recent research

    en.wikipedia.org/wiki/Wikipedia:Wikipedia...

    "All WikiChat components, and a sample conversation about an upcoming movie [Oppenheimer], edited for brevity. The steps taken to generate a response include (1) generating a query to retrieve from Wikipedia, (2) summarizing and filtering the retrieved passages, (3) generating a response from an LLM, (4) extracting claims from the LLM response (5) fact-checking the claims in the LLM response ...

  4. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Download as PDF; Printable version; In other projects ... move to sidebar hide. Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of ...

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    Advances in software and hardware have reduced the cost substantially since 2020, such that in 2023 training of a 12-billion-parameter LLM computational cost is 72,300 A100-GPU-hours, while in 2020 the cost of training a 1.5-billion-parameter LLM (which was two orders of magnitude smaller than the state of the art in 2020) was between $80,000 ...

  6. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  7. Wikipedia:Large language models - Wikipedia

    en.wikipedia.org/wiki/Wikipedia:Large_language...

    If using an LLM as a writing advisor, i.e. asking for outlines, how to improve paragraphs, criticism of text, etc., editors should remain aware that the information it gives is unreliable. If using an LLM for copyediting, summarization, and paraphrasing, editors should remain aware that it may not properly detect grammatical errors, interpret ...

  8. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  9. Logic learning machine - Wikipedia

    en.wikipedia.org/wiki/Logic_learning_machine

    Logic learning machine (LLM) is a machine learning method based on the generation of intelligible rules. LLM is an efficient implementation of the Switching Neural Network (SNN) paradigm, [ 1 ] developed by Marco Muselli, Senior Researcher at the Italian National Research Council CNR-IEIIT in Genoa .