enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model, it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.

  3. Rutherford model - Wikipedia

    en.wikipedia.org/wiki/Rutherford_model

    The Rutherford model was devised by Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson 's plum pudding model of the atom was incorrect. Rutherford's new model [1] for the atom, based on the experimental results, contained new ...

  4. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld argued that if electronic orbits ...

  5. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    Rutherford scattering or Coulomb scattering is the elastic scattering of charged particles by the Coulomb interaction. The paper also initiated the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering is now exploited by the materials science community in an analytical technique called ...

  6. Photoinduced charge separation - Wikipedia

    en.wikipedia.org/wiki/Photoinduced_charge_separation

    In 1913, Niels Bohr refined the Rutherford model by stating that the electrons existed in discrete quantized states called energy levels. This meant that the electrons could only occupy orbits at certain energies. The laws of quantum physics apply here, and they don't comply with the laws of classical newtonian mechanics.

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    This constraint automatically allowed only certain electron energies. The Bohr model of the atom fixed the problem of energy loss from radiation from a ground state (by declaring that there was no state below this), and more importantly explained the origin of spectral lines. The Rutherford–Bohr model of the hydrogen atom

  8. History of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/History_of_quantum_mechanics

    The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen by using the transitions of electrons between orbits. [24]: 276 While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model ...

  9. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    The Balmer series is characterized by the electron transitioning from n ≥ 3 to n = 2, where n refers to the radial quantum number or principal quantum number of the electron. The transitions are named sequentially by Greek letter: n = 3 to n = 2 is called H-α, 4 to 2 is H-β, 5 to 2 is H-γ, and 6 to 2 is H-δ.