Search results
Results from the WOW.Com Content Network
A solved Rubik's Revenge cube. The Rubik's Revenge (also known as the 4×4×4 Rubik's Cube) is a 4×4×4 version of the Rubik's Cube.It was released in 1981. Invented by Péter Sebestény, the cube was nearly called the Sebestény Cube until a somewhat last-minute decision changed the puzzle's name to attract fans of the original Rubik's Cube. [1]
A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .
A Sudoku whose regions are not (necessarily) square or rectangular is known as a Jigsaw Sudoku. In particular, an N×N square where N is prime can only be tiled with irregular N-ominoes. For small values of N the number of ways to tile the square (excluding symmetries) has been computed (sequence A172477 in the OEIS). [10]
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
An animated example solve has been made for each of them. The scrambling move sequence used in all example solves is: U2 B2 R' F2 R' U2 L2 B2 R' B2 R2 U2 B2 U' L R2 U L F D2 R' F'. Use the buttons at the top right to navigate through the solves, then use the button bar at the bottom to play the solving sequence. Example solves.
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
The Square Two is mechanically the same as a Square-1, but the large corner wedges of the top and bottom layers are cut in half, effectively making the corner wedges as versatile as the edge wedges. This removes the locking issue present on the Square-1, which in many ways makes the Square Two easier to solve (and scramble) than its predecessor.
Similarly, Baudhayana discovered that x = 17, y = 12 and x = 577, y = 408 are two solutions to the Pell equation, and that 17/12 and 577/408 are very close approximations to the square root of 2. [6] Later, Archimedes approximated the square root of 3 by the rational number 1351/780.