enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  3. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  4. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.

  5. Scale invariance - Wikipedia

    en.wikipedia.org/wiki/Scale_invariance

    In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical term for this transformation is a dilatation (also known as dilation).

  6. Sz.-Nagy's dilation theorem - Wikipedia

    en.wikipedia.org/wiki/Sz.-Nagy's_dilation_theorem

    For a contraction T (i.e., (‖ ‖), its defect operator D T is defined to be the (unique) positive square root D T = (I - T*T) ½.In the special case that S is an isometry, D S* is a projector and D S =0, hence the following is an Sz.

  7. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point X to a point X ′ by the rule, [1]

  8. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

  9. Dilation - Wikipedia

    en.wikipedia.org/wiki/Dilation

    Dilation (metric space), a function from a metric space into itself; Dilation (operator theory), a dilation of an operator on a Hilbert space; Dilation (morphology), an operation in mathematical morphology; Scaling (geometry), including: Homogeneous dilation , the scalar multiplication operator on a vector space or affine space