enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potential of mean force - Wikipedia

    en.wikipedia.org/wiki/Potential_of_mean_force

    Lemkul et al. have used steered molecular dynamics simulations to calculate the potential of mean force to assess the stability of Alzheimer's amyloid protofibrils. [6] Gosai et al. have also used umbrella sampling simulations to show that potential of mean force decreases between thrombin and its aptamer (a protein-ligand complex) under the ...

  3. Free-energy perturbation - Wikipedia

    en.wikipedia.org/wiki/Free-energy_perturbation

    An alternative to free-energy perturbation for computing potentials of mean force in chemical space is thermodynamic integration. Another alternative, which is probably more efficient, is the Bennett acceptance ratio method. Adaptations to FEP exist which attempt to apportion free-energy changes to subsections of the chemical structure. [5]

  4. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    The potential functions representing the non-bonded energy are formulated as a sum over interactions between the particles of the system. The simplest choice, employed in many popular force fields, is the "pair potential", in which the total potential energy can be calculated from the sum of energy contributions between pairs of atoms ...

  5. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

  6. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  7. Debye–Hückel theory - Wikipedia

    en.wikipedia.org/wiki/Debye–Hückel_theory

    To calculate this energy two steps are needed. The first step is to specify the electrostatic potential for ion j by means of Poisson's equation = ψ(r) is the total potential at a distance, r, from the central ion and ρ(r) is the averaged charge density of the surrounding cloud at that distance.

  8. Effective potential - Wikipedia

    en.wikipedia.org/wiki/Effective_potential

    There are many useful features of the effective potential, such as . To find the radius of a circular orbit, simply minimize the effective potential with respect to , or equivalently set the net force to zero and then solve for : = After solving for , plug this back into to find the maximum value of the effective potential .

  9. Thermodynamic potential - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_potential

    A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1] [2] is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics , where potential energy is defined as capacity to do work, similarly different potentials have different meanings.