Search results
Results from the WOW.Com Content Network
Traffic signal timing is a very complex topic. For example timing a 'WALK' signal for a wide pedestrian crossing and slower pedestrians (for example the elderly) could result in very long waits for vehicles, and thus increases the likelihood of cars running the light, which could potentially cause accidents. Therefore, optimizing the safety of ...
Traffic actuated signal systems use detectors to adjust timing for: Only the main street - semi-actuated system; Both main and cross streets - fully actuated system. The above method is primitive real-time signal optimization at best. This method will optimize one traffic signal at a time.
The Sydney Coordinated Adaptive Traffic System, abbreviated SCATS, is an intelligent transportation system that manages the dynamic (on-line, real-time) timing of signal phases at traffic signals, meaning that it tries to find the best phasing (i.e. cycle times, phase splits and offsets) for a traffic situation (for individual intersections as well as for the whole network).
Attempts are often made to place traffic signals on a coordinated system so that drivers encounter a green wave — a progression of green lights. The distinction between coordinated signals and synchronized signals is very important. Synchronized signals all change at the same time and are only used in special instances or in older systems.
Pressure in cylinder pattern in dependence on ignition timing: (a) - misfire, (b) too soon, (c) optimal, (d) too late. In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke.
The full-timecode specification is of the form "IRIG J-xy", where x denotes the variant, and y denotes a baud rate of 75×2 y. Normally used combinations are J-12 through J-14 (300, 600, and 1200 baud), and J-25 through J-29 (2400 through 38400 baud).
Split Cycle Offset Optimisation Technique (SCOOT) is a real time adaptive traffic control system for the coordination and control of traffic signals across an urban road network. Originally developed by the Transport Research Laboratory [ 1 ] for the Department of Transport in 1979, research and development of SCOOT has continued to present day.
A technology for smart traffic signals has been developed at Carnegie Mellon University and is being used in a pilot project in Pittsburgh in an effort to reduce vehicle emissions in the city. Unlike other dynamic control signals that adjust the timing and phasing of lights according to limits that are set in controller programming, this system ...