Search results
Results from the WOW.Com Content Network
Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n.
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.
If is a permutation group of degree , then the permutation representation of is the linear representation of ρ : G → GL n ( K ) {\displaystyle \rho \colon G\to \operatorname {GL} _{n}(K)} which maps g ∈ G {\displaystyle g\in G} to the corresponding permutation matrix (here K {\displaystyle K} is an arbitrary field ). [ 2 ]
Using a [,,] linear block code, one can prove that there exists a permutation code in the symmetric group of degree , having minimum distance at least and large cardinality. [10] A lower bound for permutation codes that provides asymptotic improvements in certain regimes of length and distance of the permutation code [ 10 ] is discussed below.
In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily equivalent to some diagonal matrix.
In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...
Given any set X and a collection G of bijections of X into itself (known as permutations) that is closed under compositions and inverses, G is a group acting on X. If X consists of n elements and G consists of all permutations, G is the symmetric group S n; in general, any permutation group G is a subgroup of the symmetric group of X.