enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...

  3. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n.

  4. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.

  5. Permutation representation - Wikipedia

    en.wikipedia.org/wiki/Permutation_representation

    If is a permutation group of degree , then the permutation representation of is the linear representation of ρ : G → GL n ⁡ ( K ) {\displaystyle \rho \colon G\to \operatorname {GL} _{n}(K)} which maps g ∈ G {\displaystyle g\in G} to the corresponding permutation matrix (here K {\displaystyle K} is an arbitrary field ). [ 2 ]

  6. Permutation codes - Wikipedia

    en.wikipedia.org/wiki/Permutation_Codes

    Using a [,,] linear block code, one can prove that there exists a permutation code in the symmetric group of degree , having minimum distance at least and large cardinality. [10] A lower bound for permutation codes that provides asymptotic improvements in certain regimes of length and distance of the permutation code [ 10 ] is discussed below.

  7. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily equivalent to some diagonal matrix.

  8. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...

  9. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Given any set X and a collection G of bijections of X into itself (known as permutations) that is closed under compositions and inverses, G is a group acting on X. If X consists of n elements and G consists of all permutations, G is the symmetric group S n; in general, any permutation group G is a subgroup of the symmetric group of X.