Search results
Results from the WOW.Com Content Network
Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2]) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.
Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss. From a certain perspective 'Return Loss' is a misnomer. The usual function of a transmission line is to convey ...
The voltage standing wave ratio (VSWR) at a port, represented by the lower case 's', is a similar measure of port match to return loss but is a scalar linear quantity, the ratio of the standing wave maximum voltage to the standing wave minimum voltage.
A standing wave ratio meter, SWR meter, ISWR meter (current "I" SWR), or VSWR meter (voltage SWR) measures the standing wave ratio (SWR) in a transmission line. [ a ] The meter indirectly measures the degree of mismatch between a transmission line and its load (usually an antenna ).
Figure 1. Waveguide slotted line. Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line.They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.
In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion is P T and the power received by the load after insertion is P R , then the insertion loss in decibels ...
The insertion loss is not such a problem for an unequal split of power: for instance -40 dB at port 3 has an insertion loss less than 0.2 dB at port 2. Isolation can be improved at the expense of insertion loss at both output ports by replacing the output resistors with T pads .
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.