Search results
Results from the WOW.Com Content Network
An expert system is an example of a knowledge-based system. Expert systems were the first commercial systems to use a knowledge-based architecture. In general view, an expert system includes the following components: a knowledge base, an inference engine, an explanation facility, a knowledge acquisition facility, and a user interface. [48] [49]
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
A trivial example of how this rule would be used in an inference engine is as follows. In forward chaining, the inference engine would find any facts in the knowledge base that matched Human(x) and for each fact it found would add the new information Mortal(x) to the knowledge base. So if it found an object called Socrates that was human it ...
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
The software specialist modules, which are called knowledge sources (KSs). Like the human experts at a blackboard, each knowledge source provides specific expertise needed by the application. The blackboard, a shared repository of problems, partial solutions, suggestions, and contributed information. The blackboard can be thought of as a ...
Acquisition and maintenance. Using rules meant that domain experts could often define and maintain the rules themselves rather than via a programmer. Explanation. Representing knowledge explicitly allowed systems to reason about how they came to a conclusion and use this information to explain results to users.
It's not rocket science, but a bit of good advice goes a long way. We asked bartenders to share tricks from the trade for making balanced and flavorful nonalcoholic drinks (mocktails, if you'd ...
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.