Search results
Results from the WOW.Com Content Network
An expert system is an example of a knowledge-based system. Expert systems were the first commercial systems to use a knowledge-based architecture. In general view, an expert system includes the following components: a knowledge base, an inference engine, an explanation facility, a knowledge acquisition facility, and a user interface. [48] [49]
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
A trivial example of how this rule would be used in an inference engine is as follows. In forward chaining, the inference engine would find any facts in the knowledge base that matched Human(x) and for each fact it found would add the new information Mortal(x) to the knowledge base. So if it found an object called Socrates that was human it ...
The most common decision problems are basic database-query-like questions like instance checking (is a particular instance (member of an ABox) a member of a given concept) and relation checking (does a relation/role hold between two instances, in other words does a have property b), and the more global-database-questions like subsumption (is a ...
Explanation-based learning (EBL) is a form of machine learning that exploits a very strong, or even perfect, domain theory (i.e. a formal theory of an application domain akin to a domain model in ontology engineering, not to be confused with Scott's domain theory) in order to make generalizations or form concepts from training examples. [1]
Problems with difficulties in knowledge acquisition, maintaining large knowledge bases, and brittleness in handling out-of-domain problems arose. Another, second, AI Winter (1988–2011) followed. [9] Subsequently, AI researchers focused on addressing underlying problems in handling uncertainty and in knowledge acquisition. [10]
The software specialist modules, which are called knowledge sources (KSs). Like the human experts at a blackboard, each knowledge source provides specific expertise needed by the application. The blackboard, a shared repository of problems, partial solutions, suggestions, and contributed information. The blackboard can be thought of as a ...