Ad
related to: collinear geometry def algebra examples
Search results
Results from the WOW.Com Content Network
In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".
Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...
A semipartial geometry is a partial geometry if and only if = (+) . It can be easily shown that the collinearity graph of such a geometry is strongly regular with parameters ( 1 + s ( t + 1 ) + s ( t + 1 ) t ( s − α + 1 ) / μ , s ( t + 1 ) , s − 1 + t ( α − 1 ) , μ ) {\displaystyle (1+s(t+1)+s(t+1)t(s-\alpha +1)/\mu ,s(t+1 ...
The Nagel point is the isotomic conjugate of the Gergonne point.The Nagel point, the centroid, and the incenter are collinear on a line called the Nagel line.The incenter is the Nagel point of the medial triangle; [2] [3] equivalently, the Nagel point is the incenter of the anticomplementary triangle.
In a projective plane, every non-collinear set of n points determines at least n distinct lines. As the authors pointed out, since their proof was combinatorial, the result holds in a larger setting, in fact in any incidence geometry in which there is a unique line through every pair of distinct points.
In elliptic geometry we see a typical example of this. [1]: 108 In the spherical representation of elliptic geometry, lines are represented by great circles of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean planes passing through the origin. Even though these ...
Thus, in Euclidean geometry three non-collinear points determine a circle (as the circumcircle of the triangle they define), but four points in general do not (they do so only for cyclic quadrilaterals), so the notion of "general position with respect to circles", namely "no four points lie on a circle" makes sense. In projective geometry, by ...
A collineation, automorphism, or symmetry of the Fano plane is a permutation of the 7 points that preserves collinearity: that is, it carries collinear points (on the same line) to collinear points. By the Fundamental theorem of projective geometry , the full collineation group (or automorphism group , or symmetry group ) is the projective ...
Ad
related to: collinear geometry def algebra examples