enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:High School Probability and Statistics (Basic).pdf

    en.wikipedia.org/wiki/File:High_School...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  4. Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Wishart_distribution

    Suppose G is a p × n matrix, each column of which is independently drawn from a p-variate normal distribution with zero mean: = (, …,) (,). Then the Wishart distribution is the probability distribution of the p × p random matrix [4]

  5. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

  6. File:Normal Distribution PDF.svg - Wikipedia

    en.wikipedia.org/wiki/File:Normal_Distribution...

    English: A selection of Normal Distribution Probability Density Functions (PDFs). Both the mean, μ , and variance, σ² , are varied. The key is given on the graph.

  7. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.

  8. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

  9. Random matrix - Wikipedia

    en.wikipedia.org/wiki/Random_matrix

    In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. [1] [2] Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. [4]