Search results
Results from the WOW.Com Content Network
Pyridine is also the starting compound for the preparation of pyrithione-based fungicides. [24] Cetylpyridinium and laurylpyridinium, which can be produced from pyridine with a Zincke reaction, are used as antiseptic in oral and dental care products. [62] Pyridine is easily attacked by alkylating agents to give N-alkylpyridinium
The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC 4 H 2 N] 4 H 2. The reaction entails both condensation of the aldehydes with the 2,5-positions of the pyrrole but also oxidative dehydrogenation of the porphyrinogen [RCC 4 H 2 NH] 4 .
Pyrrole is an extremely weak base for an amine, with a conjugate acid pK a of −3.8. The most thermodynamically stable pyrrolium cation (C 4 H 6 N +) is formed by protonation at the 2 position. Substitution of pyrrole with alkyl substituents provides a more basic molecule—for example, tetramethylpyrrole has a conjugate acid pK a of +3.7.
The mechanism for the synthesis of the pyrrole was investigated by V. Amarnath et al. in 1991. [4] His work suggests that the protonated carbonyl is attacked by the amine to form the hemiaminal. The amine attacks the other carbonyl to form a 2,5-dihydroxytetrahydropyrrole derivative which undergoes dehydration to give the corresponding ...
The Barton–Zard reaction is a route to pyrrole derivatives via the reaction of a nitroalkene with an α-isocyanide under basic conditions. [1] It is named after Derek Barton and Samir Zard who first reported it in 1985.
This lone pair is responsible for the basicity of these nitrogenous bases, similar to the nitrogen atom in amines. In these compounds, the nitrogen atom is not connected to a hydrogen atom. Examples of basic aromatic rings are pyridine or quinoline. Several rings contain basic as well as non-basic nitrogen atoms, e.g., imidazole and purine.
The direct amination of pyridine with sodium amide can take place in liquid ammonia or an aprotic solvent such as xylene is commonly used. Following the addition elimination mechanism first a nucleophilic NH 2 − is added while a hydride (H −) is leaving. The reaction formally is a nucleophilic substitution of hydrogen S N H.
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis