enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68 (number) - Wikipedia

    en.wikipedia.org/wiki/68_(number)

    68 is a composite number; a square-prime, of the form (p 2, q) where q is a higher prime. It is the eighth of this form and the sixth of the form (2 2.q). 68 is a Perrin number. [1] It has an aliquot sum of 58 within an aliquot sequence of two composite numbers (68, 58,32,31,1,0) to the Prime in the 31-aliquot tree.

  3. Chen's theorem - Wikipedia

    en.wikipedia.org/wiki/Chen's_theorem

    Every even number greater than can be represented as the sum of a prime and a square-free number with at most two prime factors. Also in 2022, Bordignon and Valeriia Starichkova [ 9 ] showed that the bound can be lowered to e e 15.85 ≈ 3.6 ⋅ 10 3321634 {\displaystyle e^{e^{15.85}}\approx 3.6\cdot 10^{3321634}} assuming the Generalized ...

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Repeat the procedure, since the number is greater than 7. Now, 4 becomes 5, which must be added to 6. That is 11. Repeat the procedure one more time: 1 becomes 3, which is added to the second digit (1): 3 + 1 = 4. Now we have a number smaller than 7, and this number (4) is the remainder of dividing 186/7.

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Even numbers are always 0, 2, or 4 more than a multiple of 6, while odd numbers are always 1, 3, or 5 more than a multiple of 6. Well, one of those three possibilities for odd numbers causes an issue.

  6. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 10 18 but remains unproven despite considerable effort.

  7. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  8. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS). An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.