Search results
Results from the WOW.Com Content Network
Nitrogen is plentiful in the Earth's atmosphere, and a number of commercially-important agricultural plants engage in nitrogen fixation (conversion of atmospheric nitrogen to a biologically useful form). However, plants mostly receive their nitrogen through the soil, where it is already converted in biological useful form.
The Leaf Color Chart (LCC) is a diagnostic tool used to determine the nitrogen level in rice plants relative to the shade of green of the plant's leaves. It is a ruler-shaped strip containing at least four panels of color, ranging from yellowish green to dark green.
Nitrogen is the most critical element obtained by plants from the soil, to the exception of moist tropical forests where phosphorus is the limiting soil nutrient, [36] and nitrogen deficiency often limits plant growth. [37] Plants can use nitrogen as either the ammonium cation (NH 4 +) or the anion nitrate (NO 3 −).
In plants with bacterial symbionts, which fix atmospheric nitrogen, the energetic cost to the plant to acquire one molecule of NH 3 from atmospheric N 2 is 2.36 CO 2. [13] It is essential that plants uptake nitrogen from the soil or rely on symbionts to fix it from the atmosphere to assure growth, reproduction and long-term survival.
Begonia, for Michel Bégon (1638–1710), a French official and plant collector [27] [28] 2 genera, mainly throughout the tropics, extending into the subtropics [17] [29] Mostly perennial herbaceous succulents with unisexual flowers, with a few subshrubs and herbaceous plants up to 4 m (13 ft) tall. Some species grow on rocks, some on other plants.
Soil gases (soil atmosphere [1]) are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. [2] Oxygen is critical because it allows for respiration of both plant roots and soil ...
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...
By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other trace gases (see #Composition below for more detail). Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.