Search results
Results from the WOW.Com Content Network
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
where is the identity matrix and P is a () matrix. When the generator matrix is in standard form, the code C is systematic in its first k coordinate positions. [3] A generator matrix can be used to construct the parity check matrix for a code
A matrix H representing a linear function : whose kernel is C is called a check matrix of C (or sometimes a parity check matrix). Equivalently, H is a matrix whose null space is C . If C is a code with a generating matrix G in standard form, G = [ I k ∣ P ] {\displaystyle {\boldsymbol {G}}=[I_{k}\mid P]} , then H = [ − P T ∣ I n − k ...
Linear combinations, or vector addition, of the rows of the matrix produces all possible words contained in the code. This is referred to as the span of the rows. The inner product of any two rows of the generator matrix will always sum to zero. These rows, or vectors, are said to be orthogonal.
It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for both qubit flip errors (X errors) and phase flip errors (Z errors). The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors. Its check matrix in standard form is
For general , the generator matrix of the augmented Hadamard code is a parity-check matrix for the extended Hamming code of length and dimension , which makes the augmented Hadamard code the dual code of the extended Hamming code. Hence an alternative way to define the Hadamard code is in terms of its parity-check matrix: the parity-check ...
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .
Also, the values of the message bits are calculated through this scheme; finally we can calculate the codeword by multiplying the message word (just decoded) with the generator matrix. One clue if the decoding succeeded, is to have an all-zero modified received word, at the end of ( r + 1)-stage decoding through the majority logic decoding.