enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The small-angle approximation for the sine function. The Taylor series expansions of trigonometric functions sine, cosine, and tangent near zero are: [5] ...

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  5. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    For sin(10), one requires the first 18 terms of the series, and for sin(100) we need to evaluate the first 141 terms. So for these particular values the fastest convergence of a power series expansion is at the center, and as one moves away from the center of convergence, the rate of convergence slows down until you reach the boundary (if it ...

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For a n-times differentiable function, by Taylor's theorem the Taylor series expansion is given as (+) = + ′ ()! + ()! + + ()! + (),. Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function.

  9. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. [1]