enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Sources and sinks - Wikipedia

    en.wikipedia.org/wiki/Sources_and_sinks

    where this time is the charge density, is the current density vector, and is the current source-sink term. The current source and current sinks are where the current density emerges σ > 0 {\displaystyle \sigma >0} or vanishes σ < 0 {\displaystyle \sigma <0} , respectively (for example, the source and sink can represent the two poles of an ...

  4. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = ⁡, where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I: vector field ...

  6. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    For vector flux, the surface integral of j over a surface S, gives the proper flowing per unit of time through the surface: = ^ =, where A (and its infinitesimal) is the vector area – combination = ^ of the magnitude of the area A through which the property passes and a unit vector ^ normal to the area. Unlike in the second set of equations ...

  7. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    The magnetic vector potential, , is a vector field, and the electric potential, , is a scalar field such that: [5] = , =, where is the magnetic field and is the electric field. In magnetostatics where there is no time-varying current or charge distribution , only the first equation is needed.

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates.

  9. Magnetic current - Wikipedia

    en.wikipedia.org/wiki/Magnetic_current

    A distribution of magnetic current, commonly called a magnetic frill generator, may be used to replace the driving source and feed line in the analysis of a finite diameter dipole antenna. [ 4 ] : 447–450 The voltage source and feed line impedance are subsumed into the magnetic current density.