Search results
Results from the WOW.Com Content Network
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
[5] [6] The solute and solvent should have similar electronegativity. [7] Valency factor: two elements should have the same valence. The greater the difference in valence between solute and solvent atoms, the lower the solubility.
The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1. Chlorine, as it has a valence of one ...
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.