enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The positive integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    Repeated application of the half-angle formulas leads to nested radicals, specifically nested square roots of 2 of the form . In general, the sine and cosine of most angles of the form β / 2 n {\displaystyle \beta /2^{n}} can be expressed using nested square roots of 2 in terms of β {\displaystyle \beta } .

  4. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation = can be solved as =. The eight other solutions are nonreal complex numbers , which are also algebraic and have the form x = ± r 2 10 , {\displaystyle x=\pm r{\sqrt[{10}]{2}},} where r is a fifth root of unity , which can be ...

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  6. Radical of an integer - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_integer

    In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    In fact, if the equation is reducible, one of the factors must have degree one, and thus have the form , with q and p being coprime integers. The rational root test allows finding q and p by examining a finite number of cases (because q must be a divisor of a , and p must be a divisor of d ).

  8. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    is the simplest equation that cannot be solved in radicals, and that almost all polynomials of degree five or higher cannot be solved in radicals. The impossibility of solving in degree five or higher contrasts with the case of lower degree: one has the quadratic formula , the cubic formula , and the quartic formula for degrees two, three, and ...

  9. Category:Simplified Chinese radicals - Wikipedia

    en.wikipedia.org/wiki/Category:Simplified...

    Pages in category "Simplified Chinese radicals" ... Radical 80; Radical 113; Radical 99; Radical 112; Radical 109; Radical 102; Radical 122; Radical 108; Radical 100 ...