Search results
Results from the WOW.Com Content Network
The Christoffel symbols can be derived from the vanishing of the covariant derivative of the metric tensor g ik: = = = (). As a shorthand notation, the nabla symbol and the partial derivative symbols are frequently dropped, and instead a semicolon and a comma are used to set off the index that is being used for the derivative.
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime , being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The torsion-free spin connection is given by = + = , where are the Christoffel symbols. This definition should be taken as defining the torsion-free spin connection, since, by convention, the Christoffel symbols are derived from the Levi-Civita connection , which is the unique metric compatible, torsion-free connection on a Riemannian Manifold.
The Christoffel symbol depends only on the metric tensor, or rather on how it changes with position. The variable q {\textstyle q} is a constant multiple of the proper time τ {\textstyle \tau } for timelike orbits (which are traveled by massive particles), and is usually taken to be equal to it.
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.