enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    The Christoffel symbols can be derived from the vanishing of the covariant derivative of the metric tensor g ik: = = = (). As a shorthand notation, the nabla symbol and the partial derivative symbols are frequently dropped, and instead a semicolon and a comma are used to set off the index that is being used for the derivative.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  4. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...

  5. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    On an n-dimensional Riemannian manifold, the geodesic equation written in a coordinate chart with coordinates is: + = where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols.

  6. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  7. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates by the formula = (+) = (, +,,) (where commas indicate partial derivatives). The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇.

  8. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    This metric has a coordinate singularity at the Schwarzschild radius =. Georges Lemaître was the first to show that this is not a real physical singularity but simply a manifestation of the fact that the static Schwarzschild coordinates cannot be realized with material bodies inside the Schwarzschild radius.

  9. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :