enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Entscheidungsproblem - Wikipedia

    en.wikipedia.org/wiki/Entscheidungsproblem

    The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by the work of Yuri Matiyasevich , Julia Robinson , Martin Davis , and Hilary Putnam , with the final piece of the proof in 1970, also implies a ...

  5. Julia Robinson - Wikipedia

    en.wikipedia.org/wiki/Julia_Robinson

    Julia Hall Bowman Robinson (December 8, 1919 – July 30, 1985) was an American mathematician noted for her contributions to the fields of computability theory and computational complexity theory—most notably in decision problems. Her work on Hilbert's tenth problem (now known as Matiyasevich's theorem or the MRDP theorem) played a crucial ...

  6. Martin Davis (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Martin_Davis_(mathematician)

    [1] [6] [10] Davis was also known for his model of Post–Turing machines. [3] In 1974, Davis won the Lester R. Ford Award for his expository writing related to his work on Hilbert's tenth problem, [2] [11] and in 1975 he won the Leroy P. Steele Prize and the Chauvenet Prize (with Reuben Hersh). [12]

  7. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  8. Yuri Matiyasevich - Wikipedia

    en.wikipedia.org/wiki/Yuri_Matiyasevich

    In 1963-1964 he completed 10th grade at the Moscow State University physics and mathematics boarding school No. 18 named after A. N. Kolmogorov. [ 1 ] [ 2 ] In 1964, he won a gold medal at the International Mathematical Olympiad [ 3 ] and was enrolled in the Mathematics and Mechanics Department of St. Petersburg State University without exams.

  9. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Franzén (2005) explains how Matiyasevich's solution to Hilbert's 10th problem can be used to obtain a proof to Gödel's first incompleteness theorem. [11] Matiyasevich proved that there is no algorithm that, given a multivariate polynomial p(x 1, x 2,...,x k) with integer coefficients, determines whether there is an integer solution to the ...