Search results
Results from the WOW.Com Content Network
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.
In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M, the upper left 2-by-2 corner of M, the upper left 3-by-3 corner of M, M itself.
The proof for Cramer's rule uses the following properties of the determinants: linearity with respect to any given column and the fact that the determinant is zero whenever two columns are equal, which is implied by the property that the sign of the determinant flips if you switch two columns.
The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...
An alternative derivation of the maximum likelihood estimator can be performed via matrix calculus formulae (see also differential of a determinant and differential of the inverse matrix). It also verifies the aforementioned fact about the maximum likelihood estimate of the mean. Re-write the likelihood in the log form using the trace trick: