enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Three-point estimation - Wikipedia

    en.wikipedia.org/wiki/Three-point_estimation

    m = the most likely estimate b = the worst-case estimate These are then combined to yield either a full probability distribution, for later combination with distributions obtained similarly for other variables, or summary descriptors of the distribution, such as the mean , standard deviation or percentage points of the distribution.

  3. PERT distribution - Wikipedia

    en.wikipedia.org/wiki/PERT_distribution

    In probability and statistics, the PERT distributions are a family of continuous probability distributions defined by the minimum (a), most likely (b) and maximum (c) values that a variable can take. It is a transformation of the four-parameter beta distribution with an additional assumption that its expected value is

  4. Template:Least squares and regression analysis - Wikipedia

    en.wikipedia.org/wiki/Template:Least_squares_and...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  5. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution.It models a broad range of random variables, largely in the nature of a time to failure or time between events.

  6. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    The resulting point estimate ⁡ is therefore like a weighted average of the sample mean ¯ and the prior mean =. This turns out to be a general feature of empirical Bayes; the point estimates for the prior (i.e. mean) will look like a weighted averages of the sample estimate and the prior estimate (likewise for estimates of the variance).

  7. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .

  8. Multivariate analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was "time". Use was made of a "covariate" consisting of yearly values of annual mean atmospheric pressure at sea level.

  9. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.